skip to main content


Search for: All records

Creators/Authors contains: "Warren, Dana R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As we contemplate the future of forest landscapes under changing climate conditions and land‐use demands, there is increasing value in studying historic forest conditions and how these landscapes have changed following past disturbances. Historic landscape paintings are a potential source of data on preindustrial forests with highly detailed, full‐color depictions of overstory and understory environments. They display key details about forest community composition, microhabitat features, and structural complexity from a time well before the advent of color photography. Despite these paintings' potential, their scientific applications have been impeded by questions of validity. How truly accurate are the images portrayed in these paintings? How much of an image is an artist's manipulation of a scene to best illustrate an allegory or romanticized view of nature? Following an established assessment model from historical ecology for evaluating resource validity, we demonstrate how scholarship on art history can be integrated with ecological understanding of forest landscapes to follow this model and address these questions of image veracity in 19th century American art. Further, to illustrate the potential use of these historic images in ecological studies, we present in a case study assessing microhabitat features of 10 different paintings. While this paper explores 19th century landscape art broadly, we focus our art historical review in particular on Asher Durand, a prolific and influential artist associated with the so‐called “Hudson River School” in the mid‐1800s. Durand left clear records about his perspectives on accurately depicting nature, and from a review of images and writings of Durand, we find support for the potential use of many of his paintings and sketches in historic forest ecology research. However, we also identify important caveats regarding potential ecological interpretations from these images. More broadly, because 19th century landscape paintings are not always directly transcriptive, and because regional art cultures differed in the 1800s, we cannot within this paper speak about landscape image veracity across all 19th century landscape art. However, in following established methods in historical ecology and integrating tools from art history research, we show that one can identify accurate historic landscape paintings for application in scientific studies. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    Physical disturbances in streams have important effects on rates of gross primary production (GPP) and ecosystem respiration (ER). Underlying lithology can control sediment size, amount, and evolution in the stream, influencing substrate stability and in turn benthic organisms. We assessed patterns of disturbance and recovery for metabolic processes of GPP and ER associated with periods of increased flow and suspended sediment flux between December and April in two streams in the Oregon Coast Range with differing lithologies (basalt and sandstone). The results of whole‐stream metabolism modelling indicate that the two study streams have varying patterns of response and recovery rates after storm events. Both streams were heterotrophic during the entirety of the study period with changes in heterotrophy driven by changes in ER. Poststorm GPP decreased in both streams, but the basalt basin had greater proportional decreases and recovered slower than the sandstone basin. This result was unexpected and appeared to be associated with lower light availability in the basalt basin driven by increased turbidity during storm events; the coarser basalt substrate weathers into smaller size fractions than the finer sandstone substrate, remaining in suspension over longer periods and limiting light availability to benthic primary producers. The rates of ER in the sandstone basin did not change from prestorm to poststorm, whereas rates of ER in the basalt basin had varying responses. Overall, our results indicated that the underlying lithology of small mountain streams can drive variability in GPP by controlling sediment size and light availability during storms events.

     
    more » « less
  3. Abstract

    Humans affect ecosystems in many ways, and scientific field studies are no exception. If data collection disrupts environments or biota too much, it can lead to inaccurate conclusions in the study of interest or in subsequent studies. We evaluated whether stream electrofishing surveys could measurably disturb the benthic biofilms in two forested headwaters in western Oregon, USA. While the consequences of electrofishing to macroinvertebrates and fish have been assessed, to date no studies have quantified its influence on benthic biofilms. We observed declines in the standing stocks of accrued benthic chlorophylladirectly after electrofishing in both streams. After electrofishing, the standing biofilm stocks declined by an average of ~15% in Oak Creek, a small third‐order stream in the Oregon Coast Range Mountains, and by an average of ~34% in a third‐order section of Lookout Creek, which is located in the western Cascade Mountains of Oregon, USA. In returning to Oak Creek 2 weeks after electrofishing, the standing stocks had fully recovered to their prefishing levels. While the benthic biofilm standing stocks did decline in association with electrofishing, the effects were small when compared with those of disturbances from common flow events and when scaling to the whole stream system. In Oak Creek, the proportional biofilm standing stock decline from electrofishing activity was about 26% of what was observed following a moderate flow event (40% of bank‐full discharge), and about 15% of the decline in biofilm standing stocks following a complete bank‐full discharge event (140% of bank‐full discharge).

     
    more » « less